PROPAGATION OF PERTURBATIONS IN A LIQUID
CONTAINING GAS BUBBLES

V. K. Kedrinskii

One of the models of a bubble-containing medium (Iordanskii's system of equations of motion), based
on liquid motion "averaged" on the assumption that bubble pulsation conforms to the Lamb equation, is in-
vestigated.

Solution of Tordanskii's linearized system gives a relationship between the phase velocity of sound
and the plane-wave frequency. An evaluation of this relationship for a particular bubble size distribution
agrees with known experimental results.

If the liquid component of the medium is incompressible, Tordanskii's system for bubbles of one kind
reduces approximately to a system of two second-order partial differential equations for the pressure and
concentration of gas in the medium. A solution of this system is found. For particular relative values of
the parameters of the medium (length, gas concentration, and bubble size) the processes of perturbation
propagation in bubble-containing media are similar. The similarity criterion is found from the system
solution and is confirmed experimentally.

All the known theoretical works devoted to the considered question can be divided into two approaches,
each of which has its own model of a bubble-containing medium. Both approaches are based on the "aver-
aged" motion of the liquid containing gas bubbles. The difference is that in one approach [1, 2] the pres-
sure in the gas hubble is always equal to the pressure in the liquid, and in the other [3] the pulsation of the
bubbles is given by the Lamb equation. The calculations presented below are based on Iordanskii's equa-

tions [3].

These equations in the unidimensional case have the form
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Here p, p, and u are the averaged density, pressure, and velocity of the particle in the medium and
kj is the volume concentration of gas for bubbles of radius Rj. The following assumptions were made in
the determination of system (0.1) in [3]:

1. the characteristic length L of the average motion, the average distancel between the bubbles,
and the radius Rj of the bubbles satisfy the inequalities L>>] >>Rj;

2. nonsphericity of the bubbles and the gas mass can be neglected;

3. the equation of state is written in the acoustic approximation for the liquid component of the me-
dium;

4. the initial values kjg. Ryq, and p, are independent of x.

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4,
pp. 29-34, July-August, 1968. Original article submitted April 16th, 1968.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. Al rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

370



0L ' H | ‘ i f,kHZ
50 100 50 200 250 300 350 4oy

Fig. 1

By comparison with Tordanskii’'s equations we make one additional assumption here. In the third
term of the second equation of (0.1) we omit the term

N
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in the derivative.

1. We determine the velocity of propagation for small perturbations. Linearizing (0.1) and elimi-
nating the density, we obtain

Here & is the natural frequency of the bubble. We seek the solution in the form
p = Agilwt-mx) k; [ ko = Bjeilat-ma),

From (1.1) we easily obtain the following relationship for the phase velocity of sound c,:

o g o ey @ N 2 Y2
?;2““1+c122 ko(i 92> <°1 pgkl))'

(1.2)
Here ¢y is the sound veloeity in the liquid and c;is the sound velocity in the medium according to the

equilibrium model [1]. Thus, (1.1) describes the motion with dispersion.

With N— and with the limit conversion in (1.2) we can write
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Here k(R) is the fractional concentration of bubbles of a particular kind. The integral in (1.3) for
function k(R) of the form

(R/bP
14 (r/0) (1.4)

where b is a scale approximating the experimental bubble size distribution [4], can be determined. In this
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case the phase Velocitjr is
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Fig. 2 Here Q(b) is the scale frequency.

Figure 1 shows the results of calculating the relationship between the phase velocity ¢y and the fre-
quency f (f=w/2n) from Eq. (1.5) with the following initial parameters: py=1 atm, y=1.4,k;=0.00025,
0.00020, and 0.00015 (curves 1, 2, and 3, respectively). The results of [4] are represented by experi-
mental points demarcating the region of spread for the experimental data. Despite the great spread of the
experimental data (this can presumably be attributed to the instability of the concentration, which varied
in the range 0.00015-~0.00025), it is easy to follow the general nature of the variation of the phase velocity
with frequency.

The calculation was carried out for three concentrations so that a spread of calculated values cor-
responding to the experimental spread would be obtained. The scale b was chosen so that the calculated
data from (1.5) would agree with the experimental data at the point ¢;=cy (in Fig. 1,f=80 kHz corresponds
to this point). The broken line is the calculated relationship for the actual phase veloeity for a medium
composed of equal bubbles with radius Ry=0,0055 cm, corresponding to the largest "partial" concentration
ky=0.00015. The agreement between calculated curves and experimental data is satisfactory.

Figure 1 shows that ¢y = ¢y when f — «; with very long waves {f — 0} the medium attains equilibrium
completely, the dispersion disappears, and ¢, — ¢; (when ¢;>>cy).

From the obtained result we can conclude that (0.1) corresponds to a real flow of liquid containing
gas bubbles.

2. We make some estimates of shock-wave interaction in a bubble-containing medium. To do this
we transform (0.1) by introducing the following simplifications:

1. we regard the liquid as containing bubbles of only one kind;
2. we assume that cy=;

3. in the first, second, and fourth equations of (0.1) we omit the terms
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We introduce the new symbols
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Regarding x and y as new independent variables, ¢ and £'as the required functions, and assuming
9y/8x and u small, we obtain instead of (2.1)
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The solution of the first equation of (2.2) has the form
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For a specific problem A and B can be determined, after which substitution of (2.3) in the second
equation of (2.2) will make it possible to determine ¢ and, hence,y(t).
We consider the following cases:

1. On a solid wall there is a layer of thickness h of uniformly distributed cavitation bubbles of ini-
tial radius R at pressure p;. At time t=0 a pressure P is instantaneously imposed on the layer boundary
{x=h) and is subsequently maintained. We determine the pressure on the solid wall.

The boundary conditions for (2.3) are
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the last in view of symmetry.

Then, on the solid wall we obtain
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To determine y we can use the second equatijon of (2.2} in its initial form (Lamb equation)
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Figure 2 shows the result of calculation of function p{t) for P=100 py and 7*=3 from Eq. (2.4) and
(2.5). Despite the fact that P=1 atm is imposed on the boundary, a pressure of several tens of atmos-
pheres arises on the wall, as Fig. 2 shows. This confirms the conclusion in [5] to the effect that collapse
of the cavitation bubbles on the plane leads not only to erosive damage to the surface, but also to genera-
tion by the bubble-containing medium of pressure pulses on the entire surface of the wall. Figures 3 and 4
show the maximum pressure p* (in atm) on the solid wall and the minimum radius y* (in dimensionless form)
of the collapsed bubble as functions of n* where curves 1, 2, 8, 4 and 5 correspond to p;=0.33, 0.5, 1,

1.4 and 10 (10* dyne/cm?).

The function y* (7" practically determines one of the main parameters of pulsation of the "collective"
bubble —the degree of compression; the second parameter —the collapse time t* (emission time for the
first pulse in Fig. 2) —is determined by complete linearization of (2.2) and neglect of the pressure inside
the bubble

* = 0.755 R, <i’lg_>l"2 ele (2.6)

The agreement between the values of t* calculated from Eq. (2.6) and obtained by numerical solution
of (2.2) is perfectly satisfactory.
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2. In the case considered the solid wall can be replaced by an
9, L -0 incompressible liguid, and the pressure on the front boundary can be
specified as P(t) [or P(y) in the new variables]. The solution of (2.2)

N~ is given, as before, by Eq. (2.4) and (2.5).

Figure 5 shows calculation results for the shape of the pressure
wave in the medinm at the boundary of the incompressible liquid for

— -t bubble layers of length x=0, 1, 2, and 3 cm, respectively, and gas
- concentration k;=0.08. The form of p(t) in Fig. 5 at x=0 gives the
T=5em form of the initial shock wave (on the front boundary) with the following

parameters: maximum amplitude —10 atm, time of positive pressure

— 1t
Fig. 5 phase — 107" sec.

With these parameters we carried out an experiment on shock-
wave interaction with a bubble-containing medium. The experimental
results are shown in Fig. 6. The frames in Fig. 6 correspond (as in Fig. 5) to the values x=0, 1, 2, 3 cm
in descending order. A comparison of Figs. 5 and 6 reveals that (2.2) quite satisfactorily describes the
nature of the interaction and takes into account the main factors: stratification of the shock wave and trans-
mission of energy to the emission of the bubble-containing medium.

Equation (2.4) for the pressure in the bubble~containing medium indicates that the superscript

* (3k0)1/2h —_ Q(Ro)h (2q7)

Ro c1

1

plays the role of similarity criterion. By changing k;, R, and h within a fixed n* we obtain the same re-
sult. This similarity was confirmed experimentally. In fact, when t=0, y=1 and Eq. (2.4) gives the
amplitude of the shock wave passing through the given layer.

Figure 7 shows the relationship between PY=(p —p,)/P(t) for t=0 and n*, which will be universal and
independent of P when P>p;, On the graph we have plotted the experimental data for P'(n¥ for different
initial gas concentrations k; in the medium: 1) 0.004; 2) 0.02; 3) 0.06; 4) 0.08; 5} 6.10; 6) 0.15. The
agreement is perfectly satisfactory.

3. The coefficients in Eq. (2.3) can also be determined for a semi-infinite bubble-containing medium
on the assumption of a bounded solution at infinity. In this case, instead of (2.4), we have

p= PV 4 Py (L — YoM, 2.8)
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For a shock wave of triangular profile with maximum amplitude 20 atm and with time of positive
pressure phase 1074 sec for k;=0.002 and Ry=0.4 cm, we made a calculation from (2.8). The calculation
results {curves 1-9) for the pressure distribution (in atm) in the medium for various fixed instants (1) 1.4;
2) 2.5; 8) 3.3; 4) 4.4; 5)5.8; 6)22.7; 7)32.9; 8) 39.1; 9) 46.1 [10"4] sec) are shown in Fig, 8. The

figure shows that a wave with an amplitude which decreases exponentially with time is propagated with
variable velocity through the medium.

After some time (due to the fact that the bubbles continue to pulsate) a compression wave arises again
in the initial layers and is again propagated inside the layer.

3. The system of motion equations for a liquid containing gas bubbles can be written in a form dif-
ferent from (0.1): The Lamb equation can be replaced by the energy-conservation equation. The latter can
be obtained from simple physical ideas of the nature of the compression-wave interaction with the bubble-
containing medium. Tt is obvious that during propagation the wave must expend energy on alteration of the
internal energy Ep of the gas and the kinetic energy Ty of the liquid due to the pulsating bubbles. We as-
sume in this case that the change in the internal and kinetic energy of the liquid component is small.

The change in energy per unit volume of the medium can then be written as

%§p”dt=*(Tn+En) <En:—§ Po<’E;co‘>de). 3.1)

fa
The brackets contain the expression for the internal-energy change E, of the gas per unit volume on

the assumption that there are bubbles of only one kind and their number nper unit volume of the incompress-
ible liquid is constant; for the change in kinetic energy we have

Ty = 3/ypok (dR | dt)? (k = n¥/snRS).

On the other hand, the first integral in the
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Fig. 7 ' in place of (T +Ey) in (3.1) and changing the variables,
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we obtain

3.3)

The use of Eg. (3.3) instead of the Lamb equation of Eq. (0.1) leads to a system of first-order equa-
tions.

The investigation of the energetic variant of the model of a bubble-containing medium was carried
out in collaboration with R. 1. Soloukhin.

The author expresses his thanks to R. L. Soloukhin and V. F. Minin for proposing the considered
problem, and to L. V. Ovsyannikov, R. M. Garipov, and G. M. Pigolkin for interest in the work and use-~
ful comments.

LITERATURE CITED

1. G. M. Lyakhov, "Shock waves in multicomponent media, " Izv. AN SSSR, OTN, Mekhanika i
mashinostroenie, no. 1, 1959,

2. 1. J. Campbell, A. S, Pitcher, "Shock waves in a liquid containing gas bubbles, " Proc. Roy. Soc.
ser. A, vol. 243, no. 1235, p. 534, 1958,

3. S. V. lordanskii, "Equations of motion for a liquid containing gas bubbles, " PMTF, no. 3, 1960,

4. F. Fox, S. Curley, and G. Larson, "Phase velocity and absorption measurement in water con-
taining air bubbles, " {Russian translation], Probl. sovrem. fiz,, Sb. perev. i obz, inostr. period.
lit., no.8, 1956,

5. I. D. Van Manen, "Bent trailing edges of propeller blades of high powered single-screw saips, "
Internat. Shipbuild. Progr., vol. 10, no. 101, 1963.

376



